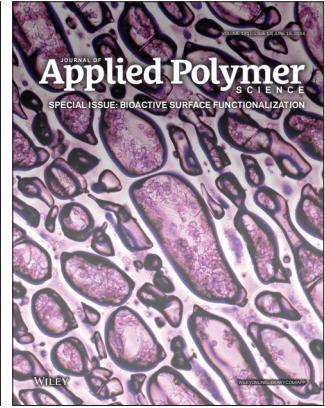
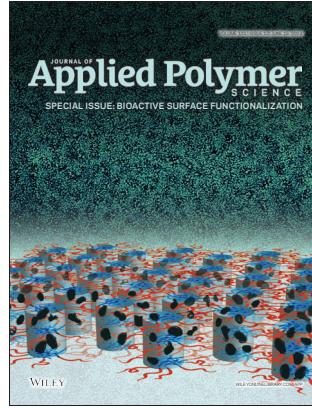

Special Issue: Bioactive Surface Functionalization

Guest Editor: Prof. Koon Gee Neoh (National University of Singapore)

EDITORIAL

Bioactive Surface Functionalization

K. G. Neoh, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40607](https://doi.org/10.1002/app.40607)



REVIEWS

Orthogonal surface functionalization through bioactive vapor-based polymer coatings

X. Deng and J. Lahann, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40315](https://doi.org/10.1002/app.40315)

Surface modifying oligomers used to functionalize polymeric surfaces: Consideration of blood contact applications

M. L. Lopez-Donaire and J. P. Santerre, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40328](https://doi.org/10.1002/app.40328)

Block copolymers for protein ordering

J. Malmström and J. Travas-Sejdic, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40360](https://doi.org/10.1002/app.40360)

RESEARCH ARTICLES

MS-monitored conjugation of poly(ethylene glycol) monomethacrylate to RGD peptides

O. I. Bol'shakov and E. O. Akala, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40385](https://doi.org/10.1002/app.40385)

Synthesis and characterization of surface-grafted poly(*N*-isopropylacrylamide) and poly(carboxylic acid)—Iron particles via atom transfer radical polymerization for biomedical applications

J. Sutrisno, A. Fuchs and C. Evrensel, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40176](https://doi.org/10.1002/app.40176)

Deposition of nonfouling plasma polymers to a thermoplastic silicone elastomer for microfluidic and biomedical applications

P. Gross-Kosche, S. P. Low, R. Guo, D. A. Steele and A. Michelmore, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40500](https://doi.org/10.1002/app.40500)

Regeneration effect of visible light-curing furfuryl alginate compound by release of epidermal growth factor for wound healing application

Y. Heo, H.-J. Lee, E.-H. Kim, M.-K. Kim, Y. Ito and T.-I. Son, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40113](https://doi.org/10.1002/app.40113)

Bioactive agarose carbon-nanotube composites are capable of manipulating brain-implant interface

D. Y. Lewitus, K. L. Smith, J. Landers, A. V. Neimark and J. Kohn, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40297](https://doi.org/10.1002/app.40297)

Preparation and characterization of 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer nanofibers prepared via electrospinning for biomedical materials

T. Maeda, K. Hagiwara, S. Yoshida, T. Hasebe and A. Hotta, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40606](https://doi.org/10.1002/app.40606)

Nanostructured polystyrene films engineered by plasma processes: Surface characterization and stem cell interaction

S. Mattioli, S. Martino, F. D'Angelo, C. Emiliani, J. M. Kenny and I. Armentano, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40427](https://doi.org/10.1002/app.40427)

Microtextured polystyrene surfaces for three-dimensional cell culture made by a simple solvent treatment method

M. E. DeRosa, Y. Hong, R. A. Faris and H. Rao, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40181](https://doi.org/10.1002/app.40181)

Elastic biodegradable starch/ethylene-co-vinyl alcohol fibre-mesh scaffolds for tissue engineering applications

M. A. Susano, I. B. Leonor, R. L. Reis and H. S. Azevedo, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40504](https://doi.org/10.1002/app.40504)

Fibroblast viability and inhibitory activity against *Pseudomonas aeruginosa* in lactic acid-grafted chitosan hydrogels

A. Espadín, N. Vázquez, A. Tecante, L. Tamay de Dios, M. Gimeno, C. Velasquillo and K. Shirai, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40252](https://doi.org/10.1002/app.40252)

Surface activity of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride

C. Li, W. Liu, L. Duan, Z. Tian and G. Li, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40174](https://doi.org/10.1002/app.40174)

Collagen immobilized PET-g-PVA fiber prepared by electron beam co-irradiation

G. Dai, H. Xiao, S. Zhu and M. Shi, *J. Appl. Polym. Sci.* 2014, DOI: [10.1002/app.40597](https://doi.org/10.1002/app.40597)

Bioactive Surface Functionalization

Many different materials (metals, polymers, ceramics, and composites) are used for biomedical applications. The bulk property of a material is often a key factor in its selection for a particular application, for example titanium and its alloys are widely used as orthopedic implants because they have the appropriate mechanical properties. However, the surface characteristics of a material, including its wettability, charge, chemistry, and topographical features, govern its interaction with its environment. These interfacial interactions are highly complex in a biological environment such as blood, and when a material is placed in this environment, adsorption of proteins occurs within milliseconds.¹ The adsorbed proteins subsequently influence cellular events at the surface, which may or may not be desirable for the functionality of the material. For example, deposition of fibrin on central venous catheters and formation of blood clots may lead to catheter malfunction and serious complications such as pulmonary embolism.² Bacterial cells also readily attach to materials surfaces, and catheters inserted into the body often serve as a nidus for bacterial colonization, and consequential infections. Conversely, surfaces of orthopedic implants have to promote bone cell adhesion and functions to prevent implant failure. Similarly, scaffolds for tissue engineering must be devised to support cell adhesion, proliferation, and differentiation. Thus, a major challenge for materials intended for use in biological environments is the necessity to control the interfacial phenomena to suit the application. This difficulty is aptly illustrated by the quote, "God made the bulk; surfaces were invented by the devil" attributed to Wolfgang Pauli, 1945 Nobel laureate in Physics.³ Nevertheless, in recent years, great strides have been made in the development of new approaches to modulate the physicochemical surface properties of materials.

This special issue on Bioactive Surface Functionalization provides a collection of papers highlighting the wide range of strategies that can be used to tailor surfaces to achieve particular interactions with biological systems. The collection comprises three review and several primary research articles. The reviews give an overview of three approaches for modulating the bioactivity of surfaces: reactive chemical vapor deposition polymerization, blending with surface additives and surface modifying

macromolecules, and the use of block copolymer thin films for the creation of ordered arrays of proteins or peptides. Each approach has its unique advantages, limitations, and applicability with respect to the bulk material and desired surface functional groups. Ten of the primary research papers address ways of modulating interfacial phenomena such as blood protein adsorption/thrombogenicity, and cell and bacterial response while the remaining two papers discuss modifications involving collagen, the most abundant protein in mammals. The systems conferred with bioactivity include microparticles, fibers, films, hydrogels, and scaffolds, and consist of both man-made materials as well as biopolymers. Surface modification techniques described include the introduction of nano- and microfeatures, and functionalization with the appropriate polymers or biomolecules. The diversity of the research is a reflection of the numerous potential applications of bioactive surfaces. Undoubtedly much work remains to be done in this important area, and with the progress that is being made in the development of surface modification strategies, the range of applications of bioactive surfaces will correspondingly increase.

Koon-Gee Neoh
Editorial Board
Journal of Applied Polymer Science,
NUS Graduate School for Integrative Sciences and
Engineering, National University of Singapore,
Singapore

REFERENCES

1. Schmidt, D. R.; Waldeck, H.; Kao, W. J. In *Biological Interactions on Materials Surfaces: Understanding and Controlling*; Puleo, D. A., Bizios R., Eds.; Spring Science + Business Media LLC: New York, NY, **2009**; Chapter 1, pp 1–18.
2. Boersma, R. S.; Jie, K. S. G.; Verbon, A.; van Pampus, E. C. M.; Schouten, H. C. *Ann. Oncol.* **2008**, *19*, 433.
3. Yoffe, A. D. *Contemp. Phys.* **1988**, *29*, 411.